Copied to
clipboard

G = C23.16D18order 288 = 25·32

1st non-split extension by C23 of D18 acting via D18/D9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.16D18, Dic9⋊C47C2, (C2×Dic9)⋊3C4, (C4×Dic9)⋊9C2, (C2×C4).24D18, C22⋊C4.3D9, C22.6(C4×D9), C92(C42⋊C2), (C2×C12).174D6, C18.5(C22×C4), Dic9.6(C2×C4), (C22×C6).37D6, C18.20(C4○D4), C2.1(D42D9), (C2×C36).53C22, (C2×C18).18C23, C6.72(D42S3), C18.D4.1C2, (C22×C18).7C22, C3.(C23.16D6), (C22×Dic9).2C2, C22.12(C22×D9), (C2×Dic9).23C22, C2.7(C2×C4×D9), C6.44(S3×C2×C4), (C2×C6).5(C4×S3), (C2×C18).4(C2×C4), (C9×C22⋊C4).3C2, (C3×C22⋊C4).11S3, (C2×C6).175(C22×S3), SmallGroup(288,87)

Series: Derived Chief Lower central Upper central

C1C18 — C23.16D18
C1C3C9C18C2×C18C2×Dic9C22×Dic9 — C23.16D18
C9C18 — C23.16D18
C1C22C22⋊C4

Generators and relations for C23.16D18
 G = < a,b,c,d,e | a2=b2=c2=1, d18=b, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d17 >

Subgroups: 368 in 114 conjugacy classes, 52 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C23, C9, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C18, C18, C18, C2×Dic3, C2×C12, C22×C6, C42⋊C2, Dic9, Dic9, C36, C2×C18, C2×C18, C2×C18, C4×Dic3, Dic3⋊C4, C6.D4, C3×C22⋊C4, C22×Dic3, C2×Dic9, C2×Dic9, C2×C36, C22×C18, C23.16D6, C4×Dic9, Dic9⋊C4, C18.D4, C9×C22⋊C4, C22×Dic9, C23.16D18
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, D9, C4×S3, C22×S3, C42⋊C2, D18, S3×C2×C4, D42S3, C4×D9, C22×D9, C23.16D6, C2×C4×D9, D42D9, C23.16D18

Smallest permutation representation of C23.16D18
On 144 points
Generators in S144
(2 98)(4 100)(6 102)(8 104)(10 106)(12 108)(14 74)(16 76)(18 78)(20 80)(22 82)(24 84)(26 86)(28 88)(30 90)(32 92)(34 94)(36 96)(38 127)(40 129)(42 131)(44 133)(46 135)(48 137)(50 139)(52 141)(54 143)(56 109)(58 111)(60 113)(62 115)(64 117)(66 119)(68 121)(70 123)(72 125)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 97)(2 98)(3 99)(4 100)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 107)(12 108)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 126)(38 127)(39 128)(40 129)(41 130)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 137)(49 138)(50 139)(51 140)(52 141)(53 142)(54 143)(55 144)(56 109)(57 110)(58 111)(59 112)(60 113)(61 114)(62 115)(63 116)(64 117)(65 118)(66 119)(67 120)(68 121)(69 122)(70 123)(71 124)(72 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 117 79 46)(2 134 80 63)(3 115 81 44)(4 132 82 61)(5 113 83 42)(6 130 84 59)(7 111 85 40)(8 128 86 57)(9 109 87 38)(10 126 88 55)(11 143 89 72)(12 124 90 53)(13 141 91 70)(14 122 92 51)(15 139 93 68)(16 120 94 49)(17 137 95 66)(18 118 96 47)(19 135 97 64)(20 116 98 45)(21 133 99 62)(22 114 100 43)(23 131 101 60)(24 112 102 41)(25 129 103 58)(26 110 104 39)(27 127 105 56)(28 144 106 37)(29 125 107 54)(30 142 108 71)(31 123 73 52)(32 140 74 69)(33 121 75 50)(34 138 76 67)(35 119 77 48)(36 136 78 65)

G:=sub<Sym(144)| (2,98)(4,100)(6,102)(8,104)(10,106)(12,108)(14,74)(16,76)(18,78)(20,80)(22,82)(24,84)(26,86)(28,88)(30,90)(32,92)(34,94)(36,96)(38,127)(40,129)(42,131)(44,133)(46,135)(48,137)(50,139)(52,141)(54,143)(56,109)(58,111)(60,113)(62,115)(64,117)(66,119)(68,121)(70,123)(72,125), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,126)(38,127)(39,128)(40,129)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,121)(69,122)(70,123)(71,124)(72,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117,79,46)(2,134,80,63)(3,115,81,44)(4,132,82,61)(5,113,83,42)(6,130,84,59)(7,111,85,40)(8,128,86,57)(9,109,87,38)(10,126,88,55)(11,143,89,72)(12,124,90,53)(13,141,91,70)(14,122,92,51)(15,139,93,68)(16,120,94,49)(17,137,95,66)(18,118,96,47)(19,135,97,64)(20,116,98,45)(21,133,99,62)(22,114,100,43)(23,131,101,60)(24,112,102,41)(25,129,103,58)(26,110,104,39)(27,127,105,56)(28,144,106,37)(29,125,107,54)(30,142,108,71)(31,123,73,52)(32,140,74,69)(33,121,75,50)(34,138,76,67)(35,119,77,48)(36,136,78,65)>;

G:=Group( (2,98)(4,100)(6,102)(8,104)(10,106)(12,108)(14,74)(16,76)(18,78)(20,80)(22,82)(24,84)(26,86)(28,88)(30,90)(32,92)(34,94)(36,96)(38,127)(40,129)(42,131)(44,133)(46,135)(48,137)(50,139)(52,141)(54,143)(56,109)(58,111)(60,113)(62,115)(64,117)(66,119)(68,121)(70,123)(72,125), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,107)(12,108)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,126)(38,127)(39,128)(40,129)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,121)(69,122)(70,123)(71,124)(72,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117,79,46)(2,134,80,63)(3,115,81,44)(4,132,82,61)(5,113,83,42)(6,130,84,59)(7,111,85,40)(8,128,86,57)(9,109,87,38)(10,126,88,55)(11,143,89,72)(12,124,90,53)(13,141,91,70)(14,122,92,51)(15,139,93,68)(16,120,94,49)(17,137,95,66)(18,118,96,47)(19,135,97,64)(20,116,98,45)(21,133,99,62)(22,114,100,43)(23,131,101,60)(24,112,102,41)(25,129,103,58)(26,110,104,39)(27,127,105,56)(28,144,106,37)(29,125,107,54)(30,142,108,71)(31,123,73,52)(32,140,74,69)(33,121,75,50)(34,138,76,67)(35,119,77,48)(36,136,78,65) );

G=PermutationGroup([[(2,98),(4,100),(6,102),(8,104),(10,106),(12,108),(14,74),(16,76),(18,78),(20,80),(22,82),(24,84),(26,86),(28,88),(30,90),(32,92),(34,94),(36,96),(38,127),(40,129),(42,131),(44,133),(46,135),(48,137),(50,139),(52,141),(54,143),(56,109),(58,111),(60,113),(62,115),(64,117),(66,119),(68,121),(70,123),(72,125)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,97),(2,98),(3,99),(4,100),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,107),(12,108),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,126),(38,127),(39,128),(40,129),(41,130),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,137),(49,138),(50,139),(51,140),(52,141),(53,142),(54,143),(55,144),(56,109),(57,110),(58,111),(59,112),(60,113),(61,114),(62,115),(63,116),(64,117),(65,118),(66,119),(67,120),(68,121),(69,122),(70,123),(71,124),(72,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,117,79,46),(2,134,80,63),(3,115,81,44),(4,132,82,61),(5,113,83,42),(6,130,84,59),(7,111,85,40),(8,128,86,57),(9,109,87,38),(10,126,88,55),(11,143,89,72),(12,124,90,53),(13,141,91,70),(14,122,92,51),(15,139,93,68),(16,120,94,49),(17,137,95,66),(18,118,96,47),(19,135,97,64),(20,116,98,45),(21,133,99,62),(22,114,100,43),(23,131,101,60),(24,112,102,41),(25,129,103,58),(26,110,104,39),(27,127,105,56),(28,144,106,37),(29,125,107,54),(30,142,108,71),(31,123,73,52),(32,140,74,69),(33,121,75,50),(34,138,76,67),(35,119,77,48),(36,136,78,65)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I···4N6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order1222223444444444···4666669991212121218···1818···1836···36
size11112222222999918···182224422244442···24···44···4

60 irreducible representations

dim111111122222222244
type++++++++++++--
imageC1C2C2C2C2C2C4S3D6D6C4○D4D9C4×S3D18D18C4×D9D42S3D42D9
kernelC23.16D18C4×Dic9Dic9⋊C4C18.D4C9×C22⋊C4C22×Dic9C2×Dic9C3×C22⋊C4C2×C12C22×C6C18C22⋊C4C2×C6C2×C4C23C22C6C2
# reps1221118121434631226

Matrix representation of C23.16D18 in GL5(𝔽37)

360000
01000
00100
00011
000036
,
360000
01000
00100
00010
00001
,
10000
01000
00100
000360
000036
,
60000
0112000
0173100
00010
0003536
,
60000
0123300
082500
000310
000126

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,36],[36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36],[6,0,0,0,0,0,11,17,0,0,0,20,31,0,0,0,0,0,1,35,0,0,0,0,36],[6,0,0,0,0,0,12,8,0,0,0,33,25,0,0,0,0,0,31,12,0,0,0,0,6] >;

C23.16D18 in GAP, Magma, Sage, TeX

C_2^3._{16}D_{18}
% in TeX

G:=Group("C2^3.16D18");
// GroupNames label

G:=SmallGroup(288,87);
// by ID

G=gap.SmallGroup(288,87);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,219,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^18=b,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^17>;
// generators/relations

׿
×
𝔽